2,997 research outputs found

    Charmonia above the Deconfinement Phase Transition

    Full text link
    Analyzing correlation functions of charmonia at finite temperature (TT) on 323×(32−96)32^3\times(32-96) anisotropic lattices by the maximum entropy method (MEM), we find that J/ψJ/\psi and ηc\eta_c survive as distinct resonances in the plasma even up to T≃1.6TcT \simeq 1.6 T_c and that they eventually dissociate between 1.6Tc1.6 T_c and 1.9Tc1.9 T_c (TcT_c is the critical temperature of deconfinement). This suggests that the deconfined plasma is non-perturbative enough to hold heavy-quark bound states. The importance of having sufficient number of temporal data points in the MEM analysis is also emphasized.Comment: Lattice2003(nonzero), 3 pages, 3 figure

    Comment on: "Transverse-Mass M⊄M_\perp Dependence of Dilepton Emission from Preequilibrium and Quark-Gluon Plasma in High Energy Nucleus-Nucleus Collisions"

    Full text link
    In a recent Letter, Geiger presents calculations of the dilepton emission from the early stage of ultrarelativistic heavy ion collisions using the parton cascade model (PCM). He shows that the M⊄M_\perp scaling is not observed. In this Comment, we point out that this is largely due to a defect in the PCM.Comment: 3 pages, LaTex, LBL-3526

    Hadronic Spectral Functions above the QCD Phase Transition

    Full text link
    We extract the spectral functions in the scalar, pseudo-scalar, vector, and axial vector channels above the deconfinement phase transition temperature (Tc) using the maximum entropy method (MEM). We use anisotropic lattices, 32^3 * 32, 40, 54, 72, 80, and 96 (corresponding to T = 2.3 Tc --> 0.8 Tc), with the renormalized anisotropy xi = 4.0 to have enough temporal data points to carry out the MEM analysis. Our result suggests that the spectral functions continue to possess non-trivial structures even above Tc and in addition that there is a qualitative change in the state of the deconfined matter between 1.5 Tc and 2 Tc.Comment: 3 pages, 4 figures, Lattice2002(nonzerot

    J/ψJ/\psi and ηc\eta_c in the Deconfined Plasma from Lattice QCD

    Full text link
    Analyzing correlation functions of charmonia at finite temperature (TT) on 323×(32−96)32^3\times(32-96) anisotropic lattices by the maximum entropy method (MEM), we find that J/ψJ/\psi and ηc\eta_c survive as distinct resonances in the plasma even up to T≃1.6TcT \simeq 1.6 T_c and that they eventually dissociate between 1.6Tc1.6 T_c and 1.9Tc1.9 T_c (TcT_c is the critical temperature of deconfinement). This suggests that the deconfined plasma is non-perturbative enough to hold heavy-quark bound states. The importance of having sufficient number of temporal data points in MEM analyses is also emphasized.Comment: 4 pages, 4 figures, REVTEX, version to appear in Physical Review Letter

    Non-Central Heavy-Ion Collisions are the Place to Look for DCC

    Get PDF
    We give two reasons why we believe that non-central ultrarelativistic heavy ion collisions are the place to look for the disoriented chiral condensates (DCC). First, we argue that the most probable quench scenario for the formation of DCC requires non-central collisions. Second, we show by numerical simulations that strong electromagnetic fields of heavy ions can exert a surprisingly large effect on the DCC domain formation through the chiral anomaly. The effect again requires non-central collisions. Interestingly, the result of simulations is consistent with the formation of correlated two domains of the chiral condensate, which are aligned in space, perpendicular to the scattering plane, but misaligned in isospin space.Comment: 4 pages (Latex), 3 embedded ps figures, espcrc1 style, talk given at Quark Matter 97, December 97, Tsukuba, Japa

    Back-to-Back Correlations for Bosons Modified by Medium

    Get PDF
    Novel back-to-back correlations are shown to arise for thermal ensembles of squeezed bosonic states associated with medium-modified mass-shifts. The strength of these correlations could become unexpectedly large in heavy ion collisions.Comment: Talk given at Quark Matter 99, Torino, Italy, May 10-15, 1999. LaTeX, 4 pages, 2 eps figures. To appear in Nucl. Phys.

    Secondary phi meson peak as an indicator of QCD phase transition in ultrarelativistic heavy ion collisions

    Get PDF
    In a previous paper, we have shown that a double phi peak structure appears in the dilepton invariant mass spectrum if a first order QCD phase transition occurs in ultrarelativistic heavy ion collisions. Furthermore, the transition temperature can be determined from the transverse momentum distribution of the low mass phi peak. In this work, we extend the study to the case that a smooth crossover occurs in the quark-gluon plasma to the hadronic matter transition. We find that the double phi peak structure still exists in the dilepton spectrum and thus remains a viable signal for the formation of the quark-gluon plasma in ultrarelativistic heavy ion collisions.Comment: 8 pages, 9 uuencoded postscript figures included, Latex, LBL-3572

    Maximum Entropy Analysis of the Spectral Functions in Lattice QCD

    Get PDF
    First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.Comment: 51 pages, 17 figures, typos corrected, discussions on the boundary conditions and renormalization constants added. To appear in Progress in Particle and Nuclear Physics, Vol.4
    • 

    corecore